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CHAPTER 1
INTRODUCTION

The production of a large program involves writing
several thousand lines of code. Consequently, it adds a
new level of complexity and challenge as compared to the
development of smaller programs. The techniques which
work well with the small programs do not apply to the
larger programs. The approaches to the large software

production have been pursued considering three distinct

aspects.

(i) Software Development Tools: They consist of the
programming languages, text editors,
Macroprocessors, interpreter/compiler, file
system, linkage editor/linker, program verifier,
data flow analyzer, test data generator, symbolic
executors, dynamic frequency analyzer, source
program optimizer, and source program
controller. It should be noted that these tools
are needed to assist in the creative parts and
possibly automate the noncreative parts of the
software development.

(ii) Management Techniques: This 1is to manage the

activities of the personnel and to monitor their

progress.




(iii) Design Methodologies: These are to attack the

particular problems found in large softwares.
These methodologies, to a great extent, have led
to the development of supporting language
facilities.

The clear identification of the above three aspects is
important because a 1large software development is not
merely a matter of programming, but a management problem.
Thus, there must be capabilities of estimating the
necessary resources, assigning resources at appropriate
times, subdividing the development effort into phases,
monitoring these phases and imposing a set of standards
for each activity. The details of all the above aspects
are out of the scope of this paper. However, we will
consider the programming language as a tool for
development of 1large softwares and will discuss the
related issues.

The basic goals of a software development process
are: smooth design, reliability, efficiency and
maintainability of the software. The programming
languages must provide tools for assisting in achievement
of these goals. In the subsequent chapters, we discuss
the large software development goals, objective criteria
for the language choice and various language features

which satisfy these criteria. 1In the last two chapters we




consider two modern languages, ©Pascal and Ada as
software-development tools. Selected features of these
languages are presented to demonstrate how each one of
these does or does not meet the objective criteria for the

language choice.




CHAPTER 2
SOFTWARE DESIGN AND PROGRAMMING LANGUAGES

The programming language constitutes one of many tools
required for software development. Thus the programming
language's merit must be judged on how it affects the
software development and how well it can be integrated
with other software production tools.

The software production process consists of several
sequential phases. Each phase involves a distinct
activity and results in a clearly identifiable product. A
programming language should support all the phases of the
development rather than only coding.

1. Requirements Analysis Phase:

The real needs of users should be specified. Also a
look at perceived needs should be taken. Then
requirements to be satisfied by the software system should
be specified. The success of software depends upon each
of these stages reflecting the previous one. The results

of this phase should be documented in the form of a

"Requirements Document'". This should include the cost and
performance analyses, the wuser's manual and what the
system is to do. The people <charged with the

responsibility should interact with the programming

language facilities for keeping track of requirements and




guarding against inconsistencies. They should keep track

of documentation as changes are being made.

‘2. Software Design Specifications:

Based on the requirements document, a ''Specifications
Document'" should be produced, which should include:

(a) the 1identification of modules constituting the

software system and their interfaces,

(b) the identification of design methodology, and

(c) the test data.
The programming language can aid in all these.
Interaction between the programming language and design
specifications is two-way. Based on the above factors, a
suitable choice of language can be made for
implementation. Many times an available programming

language feature influences the decisions about the above

items. For example, Ada package facilities may dictate
the choice of "information hiding methodology'". (details
later).

3. Implementation:

A programming language 1is directly connected with
implementation of the software and documentation. The
choice of programming language should be such that its

facilities are compatible with the methodology identified

in the previous phase.




4, Certification:

The purpose of this phase is to ensure that the
software meets the stated requirements. It involves the
following steps.

(a) Testing

(i) Module Testing: testing individual modules

to ensure that interface specifications are met.

(ii) 1Integration Testing: for detecting

intermodule inconsistencies.

(iii) System Testing: final testing to ensure

whether the software system is according to the
requirements.

(b) Program Verifications: This concerns assessing

the correctness of the program and 1is wusually
done by formal axiomatic proofs.

The programming language should help by providing
appropriate facilities for collecting test data from other
phases and ensuring currency of tests. It should support
formal specification and verification of modules. The
programming language should also have facilities for
tracing changes to specifications, test data and
documentation, identifying all affected areas easily.

Software Development Process and Goals:

A software system, when fully developed and certified,

is complex and costly. Hence, certain design goals should




be kept in sight. We mention below three important goals
which form the basis for the rest of our discussion in
this paper.

1. Reliability:

(a) The wuser should feel comfortable to use the
software inspite of infrequent hardware, software
“and system failures or anamolies.

(b) Software should be correct so that it behaves
according to specifications.

(¢) Rigorous and unambiguous specifications should be
provided to prove correctness convincingly.

2. Maintainability:

A software system is a huge and complicated program
entailing enormous cost in terms of human efforts and
money. Therefore, it cannot be thrown away if
requirements change or latent errors are detected. Hence,
it is much more economical to modify the software system.
Consequently, tools should be provided to modify and
maintain it,

3. Efficiency:

Software should be efficient in terms of execution
time and storage space. It should also be efficient in

terms of development and maintainability efforts.




CHAPTER 3

OBJECTIVE CRITERIA FOR PROGRAMMING LANGUAGE CHOICE

There are certain language qualities which support the
development, reliability, efficiency and maintainability
of the software. At the development level the programming
language should aid the programmer in design,
documentation and debugging. Usually the whole program is
divided into simpler subtasks, each with clear purpose and
interface. The programming language should aid in
expressing each level from overall strategy to the code.
It should also enforce conventions for harmonious
interfaces between tasks.

The documentation is for readability o) that
adaptation to changes and removing latent errors can
easily be done. It should be an integral part of the
design. The programming language should support
self-documenting codes displaying a pleasant style.

Features supporting debugging are very important for
producing reliable programs. The detection of all errors
should be guaranteed at the compile time. Any left out
error should be cheaply detectable at run time. The
programming language should be such that its

implementation (compiler) 1is fast and compact, and its

object code is efficient so that extra instructions may




be inserted for debugging purposes and several runs at the
testing phase may be made without too much cost.

It is clear that for producing an efficient, reliable,
and maintainable software, the programming language should
have certain qualities. In the following section, we
discuss what qualities are necessary for a programming
language to be an effective tool for software design
process.

l. Writability:

A programming language supports writability if its
features facilitate program design by providing constructs
that make the specific adopted design methodology more
easily expressable. This shifts the programmer's concern
from the details of his tools to solving the problem with
those tools. Four properties contribute to writability.
They are: simplicity, expressiveness, orthogonality, and
definiteness.

2. Simplicity:

Natural languages are spoken and utilized easily and
without effort once they are learned. In the same manner,
a programming language should show easy fluency. Its
different features should be easy to learn and remember.
The effect of any combinations thereof should be easily
understandable and predictable.

The simplicity can be impaired in the following ways:




S

(i) A programming language may provide several
alternative ways of specifying the same concept.
For example in C, the addition of 1 to an integer
variable can be accomplished in any one of the
following four ways:
++b; b+=1; b;b+1; b++.
(ii) A programming language may allow different
concepts to be expressed by the same notation.
For example, Ada permits overloading. It should
be noted that careful use of overloading can make
the program simpler as in the case of Ada where +
can also be used for defining the matrix addition
procedure. However, ALGOL 68 and Ada both permit
the generalization of overloading to user-defined
operators and subprograms. This can easily make
programs difficult to read.

(iii) Simple features may interact to produce such a
program whose behavior is hard to predict. For
example, in Ada a behavior that is difficult to
predict 1is that of combining multitasking and
exception handling.

3. Expressiveness:

Expressiveness is a measure of how naturally the
problem-solving strategies can be mapped into program

structures. The various structures and constructs of




language must be able to express the programmer's
understanding of the solution path. The rich set of
control and type structures found in Pascal give it a high
expressive power in spite of it being a simple language
without adequate modularization mechanisms. In general,
the basic structuring tool such as abstraction of data and
control, and modularization directly aid expressiveness.

4. Orthogonality:

Any combination of the basic primitives of the
language should be allowed. This results in the greatest
possible generality, a situation free from restrictions or
special cases. The 1lack of orthogonality can force the
programmer into difficult and clumsy formats. It can
cause the program to make excessive manipulations of data
or instructions. An example of the consequences of lack
of orthogonality can be found in Pascal. Several
restrictions exist which include: (1) a file cannot be
passed by value, (2) components of a packed data structure
cannot be passed by reference, (3) procedures and
functions passed as parameters can only be by values, (4)
the type of a formal parameter can only be specified by a

type identifier and not by its representation. As an

example of this, consider the following:




(i) procedure ILLEGAL(var X: array [1l..4] of real; Y:char);

(ii)procedure LEGAL(var X:T;Y:char); where T is declared
in an outer scope as type T = array [l..4] of real;
The declaration (ii) is legal whereas (i) is not.

5. Definiteness:

This criterion is concerned with the accuracy of a
programming language's description of its syntax and
semantics. This is intended to reduce vagueness which can
be accomplished by standard definitions and minimizing
ambiguously stated features. A trade-off exists between
readability and definiteness such that a fairly readable
language like Pascal may allow incorrect programs, while a
grammatically precise language such as ALGOL 68 may be
very difficult to read and utilize. For example, the
grammar of Pascal does not specify that an arithmetic
expression, such as x + 4.75, cannot be assigned to a
boolean variable. Thus, syntactically correct programs
are legal in Pascal only if they also satisfy an
additional set of conditions stated in English words in
the report. The report also does not deal with procedures
in generality and leaves out type compatibility (details
in the next chapter).

6. Readability:

Readability is a major factor which influences program

modifiability and maintenance. Utilization of




self-documenting code, abstractions of data and control
structures, and program modularization contribute to
readability. Integrated program documentation in terms of
internal comments embedded within the program contribute
to readability. Efficient comment delimiters, which
reduce the 1likelihood of omitting an ending delimiter
improves the use of comments to the programmer. In stream
oriented languages, such as Pascal, comments are placed
within special delimiting <characters and can appear
anywhere within the program. An unfortunate consequence
of this is that when the programmer forgets a trailing
delimiter the translator ignores entire pieces of the
program up to the next delimeter. The choice of a line
oriented language eliminates this problem because the end
of the line is taken to be an implicit delimiter. We find
that the Pascal comment convention is risky whereas Ada's
convention is safe because the comment is delimited by the
end of the line Ada 1is also easier to read. Lexical
conventions such as identifier length, punctuation, use of
spaces, etc. also affect readability by giving a more
natural and segregated appearance to terms. FORTRAN and C
place severe restrictions on the 1length of identifiers
which can force the programmer to virtually encrypt
his/her identifiers. The capability to use underscore

characters in identifiers, which is permitted in Ada, can

13




enhance readability. For example, "clientname" as
contrasted with "client_name" is less readable.

The syntax of the language can influence the program
readability. Explicit delimiters such as if..fi, do..od,

etc. should be preferred to the begin..end pair because

they indicate the purpose of statements. Suitable
indentation convention can make the program more readable.

The semantics of the 1language can also affect the
program readability. For example, parameter passing by
reference and global variables can produce aliasing in
Ada. Languages 1like Euclid impose semantic restrictions
that make aliasing illegal and hence detectable.

The readability is very crucial in production of large
softwares when a group of programmers are involved. It is
important to reduce the amount of individual variations so
that one member can read the program written by another
member .

7. Reliability:

A reliable program manipulates information in the way
the programmer intended. Where large software can be
developed and validated one module at a time, as in Ada,
the separate compilation facilities enhance the
reliability of the program as a whole. Formal definitions
of program semantics aid the program reliability by

favoring -program verification. Additionally, the

14




reliability depends on the reliability of the language
implmentation by a compiler.

Rigorous distinction between static and dynamic checks
can enhance reliability in so much as the programmer is

aware of the degree of validation at each step of

processing. Ada makes this distinction whereas Pascal
does not.

Another factor influencing reliability is
modifiability specially during maintenance. We discuss

modifiability separately below.

8. Modularity:

Modularity is generally considered to be the only
effective strategy for developing large softwares.
Modules have been defined on the basis of the size of the
program wunits which constitute a software system. The
concept of independence is an alternative means of
defining program modules. The goal of independence is to
have each program module to be understood and implemented
independently of the other modules in the system. Each
module would implement a single and simple conceptual
function. Modularity has been called "purposeful
structuring.”" Ada, CLU and Modula-2 support modularity

via packages, clusters and modules respectively.

15




9. Security:

A language supports security if all type checks can be
performed statically (at compile time). A few excepted
ones must be checkable at run time without too much cost.
This 1is important for assigning storage efficiently and
the speed of the object code. This directly aids the
reliability and efficiency of the software.
Strongly-typed languages such as ALGOL 68 and Ada support
this feature, whereas Pascal does not. Explicit
discussions of this feature, in cases of Pascal and Ada,
are provided in last two chapters.

10. Modifiability:

Modifiability aids reliability of the software,
because during the maintenance phase we must be able to
modify the program while retaining its reliability. The
language syntax is basically responsible for the ease of
the program modification. As seen before ALGOL 68 and Ada

delimeters are preferable to begin...end of Pascal. For

adding a new statement to a single statement else-branch
requires a bracketing pair of begin and end. In case of
nondeliberate omission, incorrect program is produced even
though the program is syntactically correct.

Other factors .influencing modifiability are typed
names and various abstractions. These enable the changes

to be localized.

16



CHAPTER 4
DESIRABLE LANGUAGE FEATURES FOR SOFTWARE

Several programming languages are available for
software development and production. In this chapter we
discuss explicit language features which satisfy the
criteria mentioned in the previous chapters in regard to
producing a reliable and maintainable software.

1. Good Syntax:

The good syntactic forms are required, for a lot of
time is spent in lexical and syntax analyses. It helps
the compiler pinpoint error, diagnose causes, recover and
move on. As seen before, it is important for supporting
readability, reliability and modifiability.

2. Strongly-typed Variables:

The language is said to be strongly typed if all type
checkings can be done statically at compile time. There
are obvious advantages to this.

(1) It provides security by static checking.

(2) 1t aids maintainability by supporting

modifiability.

(3) It aids writability.

(4) It aids readability and prohibits wundisciplined

manipulation of underlying representation.

17




It provides for accuracy checking by helping
compiler to enforce precision (e.g. Fixed point
number in Ada).

(6) It provides for efficient implementation.

One example of strongly typed language is ALGOL 68.

Block Structure:

Blocks are wuseful because scope and locality are
associated with them. Users can use them to manifest
program structure. There is no danger of interference
without permission. The space occupied by already
executed blocks can be freed. The block structure permits
efficient paging in memory management as together-used
variables can be declared together, and hence, can be
assigned contiguous locations. Space can be saved by
overlaying noninterferring blocks.

4, Procedures:

They give all advantageé of an extensible language,

providing for the storage eéonomy, compact code, and
structured programming. The procedures and their
advantages are so well-known that the details may be
omitted here in the interest of space.

5. Appropriate Levels Of Abstractions:

Abstractions should be at the same level and
compatible with each other. "Goto", typeless variables,

and pointer/reference are not at the same level as other




abstractions. These should be absent or restricted.

Instead of jumping out of Lloops, while should be used to
terminate loops, and computed "Go to" may be replaced by

case. Pointers should be severely restricted. Every

pointer variable should point to objects of a single type
only. There should not be automatic coercion, that is
pointers and object pointed to should be distinguished.
All these restrictions are satisfied by Pascal pointers.

6. Appropriate Control Structures:

This is essential for structured programming. There
are several —control structures available in modern
languages. '"Go to" use should be restricted. For jumping
out of a loop an EXIT__type statement (Ada) should be
used. The 1loop-and-half of Dahl (see bibliography) is
very appropriate:

loop
statement sequence]
while condition
statement sequence)
repeat

This is a generalization of while (if statement
sequence] is left out) and repeat (if statement sequence)
is left out). Testing is done in the middle. Several
languages permit user defined controls. Alphard (forms)

and CLU (clusters) are some of the examples.

19




Creation Of New Types:

It helps in the following ways.

(1) Readability: Appropriate choice of new names can

help readability.

(2) Modifiability: 1f the data structure

representing a variable 1is changed, then only
this type declaration needs to be changed.

(3) Factorization: A complicated data structure can

be coded only once and used several times.

(4) Type compatibility: Type equivalence can be used

to treat the compatible types the same as
explained below. It should be noted that it
directly aids security.

Rigorous Type Compatibility: .

Type compatibilities are of several kind, out of which
the following two are the most important.

(1) Name-Equivalence: Two variables are compatible

when they have the same type names or appear in
the same declaration.

(2) Structural-Equivalence: Two variables are

compatible if they have the same structures.

Example:
type t = array [1..20] of integer;

Var a, b : array [1..20] of integer;
: array [1..20] of integer;

0

20




In this example a and b, and d and e are compatible under

name equivalence. However, a and c are not as they do not
have same type names. Since a, b, and ¢ have the same
structures, they are compatible wunder the structural
equivalence.

Name equivalence has advantages over the structural
equivalence because of the following reasons. It is easy
to implement as the latter requires pattern matching. It
is closer to the abstract data type. Moreover, the named
types aid readability 1in so far as they indicate
commonality of properties specified by using the same type
names.

9. Data Abstraction:

The language should have features so that the user can
define abstract data types as in Ada (packages) or CLU
(clusters). This directly aids readability,
modifiability, factorization, checking type-compatibility
and extensibility.

10. Exception Handling:

Exception is a condition which is detected and brought
to the notice of the invoker when an attempt is made to
execute an operation. The response of the invoker is

called handling of the exception.

21




The exception handling facility renders the operation
more general and provides interaction between two levels
of abstractions (invoker's and of unit where exception
resides). The exception handling may be implemented for
indicating error conditions, classifying wvalid results
(e.g., signaling that the remaining storage 1is critically
minimum), monitoring the intermediate results, and
demanding information which may be costly to compute a
priori. The details of exception handling are out of the
scope of this paper. However, it should be noted that it
is an important feature of the language supporting the
reliability of the software as it handles anamolies and
errors gracefully as mentioned earlier.

There are several languages with exception handling
capabilities. PL/I, CLU and Ada are notable. We will
discuss the Ada's exception handling in details later.

11. Concurrent Processing Facilities:

A software such as system program may have concurrent

routines. For this, facilities of concurrent processes

(tasks) are required. The issues involved here are task's
definition, start and termination two tasks'
synchronization, and communication. At least two-

languages provide this facility: CSP and Ada. The
further development of the subject is beyond the scope of
the paper. However, details of Ada's tasks will be
provided later.
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CHAPTER 5
PASCAL AS A SOFTWARE DEVELOPMENT TOOL

According to Wirth, its designer, Pascall is a tool

for producing a reliable and efficient software. This is

because of its conceptual simplicity, efficient
implementation, and features for making programs
transparent and avoiding and detecting mistakes. It

provides the compiler with redundant information for
checking consistency without too much overhead. How
Pascal does all these is explained below.

Pascal has a rich assortment of types: symbolic
scalar, record set, subrange, etc. It also contains
simple iteration and selection statements, such as while,

repeat, for, if-then-else and case. Each variable has a

certain type so that declarations are statements of
invariant properties of wvariables. This feature is
essential for efficient automatic program verification and
implementation, and for reliability of software. Pascal
has a rich set of built-in data structures in forms of
arrays, records, lists, and sets. It also has program

units such as procedures. All these support modifiability

IThe version used in this paper is Wirth's original
version described in '"The Programming Language Pascal,"”
Acta Informatica 1 (1971).
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and maintainability of the software.

Although Pascal is one of the very successful
languages, it has serious problems as a tool for the
development of a software with a high degree of
reliability and maintainability. In the following we
point out some of its shortcomings in relation to the
criteria set forth in previous chapters.

(1) No Block Structure: Pascal has no block structure,

as ALGOL 60 or Ada.

(2) No Own Variable: Own variable is declared 1locally

and is shared by other units where implementation
details are hidden. An example is Ada package and
its wvariables. The relevance of this feature is
underscored by noting that it aids readability and
modifiability of the software. The own concept is
basic to the structure and understanding of
co-routines and concurrent processes.

(3) No Initialization At Declaration: References to

uninitialized variables are difficult to detect and
all hardware mechanisms known for this purpose are
quite expensive. A possible solution is to require
that every variable be 1initialized when it is
declared or that every variable be assigned in such
a way that the compiler can easily verify that there

are no references to uninitialized variables. Both

24




(4)

(1)

(ii)

(iii)

(iv)

these possibilities are absent from Pascal.

Pascal Is Not Strongly Typed: The following

violations of strong typing are directly against
security.

Procedure Parameters Not Secure: The Pascal

language allows procedure declaration such as:
procedure f (procedure g);

The parameter types of g are not known at compile

time.

No Static Subrange Checking: Suppose a and b are in

subrange 1..10, then it cannot be checked statically
that a + b is in 1..10. It has to be done at run
time.

No Rigorous Type Compatibility Concept: In fact, in

the original report there 1is no mention of the
concept at all.

Use 0Of Variant Records: The correct use of variant

records cannot be checked statically and run-time
checking is seldom provided because of severe impact
on execution effeciency. So the programmer has a
loop hole to short-cut type protection. Pascal

allows variant records with or without tag fields.

TYPE DEPARTMENT=(HOUSEWARE, SPORTS,DRUGS, FOOD, BEVERAGE) ;

MONTH = 1..12;
ITEM = RECORD PRICE: REAL;

25



(5)
(i)

CASE AVAILABLE: BOOLEAN OF
TRUE: (AMOUNT: INTEGER; WHERE: DEPARTMENT);
FALSE: (MONTHEXPECTED:MONTH);
END;
The identifier AVAILABLE is called the tag field of
the record structure. The conventional
implementation of variant records consists of
overlapping all variants over the same storage
area. Consequently, variant records allow the
programmer to interpret the bits stored in this area
under the different views by the type of each
variant. Suppose AVAILABLE 1is true and variant
field has been set so that the field AMOUNT has
value vg. The programmer can set AVAILABLE to FALSE

and interpret the vg as the value of MONTHEXPECTED.

This gives an uncontrolled access to the storage.
Still worse happens when tag field (AVAILABLE) is
absent. Either AMOUNT and WHERE or MONTHEXPECTED

can be used when they are not present. This error
is detectable neither at compile nor at run time,
because there is no field of the record to denote
the currently applicable variant.

Problems With Pascal Pointers:

Dangling pointers: When an object pointed to is

removed, the pointer is left dangling. The Pascal

26




(ii)

(iii)

(6)

(7

language does not have facilities to handle this
insecurity.
Uninitialized. pointers: It can cause uncontrolled
access to storage because bit string found in the
location bound to the pointer could be interpreted
as a pointer value. Addressing with this value
cannot be detected even at the run-time.
Because of undefined type compatibility, serious
problems arise with regard to the Pascal pointers.
For example, consider the following.
TYPE PTR = 1 NODE; REF = T NODE;
NODE = RECORD ITEM : INTEGER;
NEXT : PTR
END;
It is not clear whether it is legal to assign a
variable of type REF to a variable of type PTR.

Inflexibility Of Array Bounds: The array bounds

must be declared as fixed. 1If one had to create a
general program to add two vectors of the same but
arbitrary sizes, one cannot effectively do it.
Modula - 2 and Ada provide the facility of flexible
bound declaration. The details of Ada features are
discussed in the next chapter. |

No Exponentiation Operators: The original Pascal

has no exponentiation operator. Conseqeuntly, the
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(8)

(9

(10)

(1)

(12)

(13)

user has to provide his own routine for such an
operation.

Buffering Not Hidden: Buffers and buffering

mechanisms are not hidden from the programmer in put
(f) and get (f) file operations. Reset (f) rewinds
the file and reads the first component. This can
cause difficulty with physical device because of

slow speed.

No Control Abstraction: Users cannot define new
control structures as in CLU or Alphard.
Consequently, Pascal does not support

extensionability.

No Data Abstraction: No effective facility to

define new data structure as in CLU or Ada.

No Exception Handling: Pascal does not  have

system-provided exception handling facilities.

Not Very Readable: Comment conventions are such

that a section of program can be ignored when
unintentional mistakes are made by omitting *). The
statements such as if..fi, do..od, etc. are not
present. The 1lexical convention permits limited
possibilities for variable names.

No Concurrent Processes: Because of the 1lack of

this feature, Pascal is not an effective tool for

system programming.

28




(14)

Ambiguities In Pascal:

(a) Type-Declaration Order: Although the report

does not say so explicitly, the language features
appear to favor one-pass compiler and implementors

have assumed this to be the designer's intent.

However, this implicit one-pass compilation
capability creates some traps into which
implementors have fallen. Generally, one pass

compilation requires that the declaration of an
identifier must precede references to it. However,
Pascal does not specify it, especially that
declaration should occur before use within the type
definitions or procedure declaration parts. Pascal
imposes rigid order on constant, type, variables,
and procedure declarations. Thus, it does not allow
natural groupings of the types, variables and
procedures which manipulate them. This inability in
structuring large programs is one of Pascal's most
frustrating limitations.

(b)Set Constructors: According to section 8 of the

Report, "Expressions which are members of a set must
all be of the same type, which is the base type of
the set'". Thus the constructor [4, 6, 10..20, 25]
has type SET OF INTEGER. But elsewhere 1in the

Report it is mentioned that, "The implementor may
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set a limit to the size of a base type over which a
set can be defined". We note that since the size of
INTEGER is unbounded, one might conclude that the
above  example is illegal in at least some
implementations. In practice there is another
difficulty. Even if we suppose that a limit on the
size of base type exists, the Compiler may assume
that intended base type of [4, 6, 10..20, 25] is
some subrange of integers, and apply an implicit
range to subrange transfer to its members. The
difficulty is that the 1intended subrange 1is not
apparent. This may cause problems for
representation of the set.

(15) Range Violations: Accessing an element of a Pascal

array for out-of-bound index 1is 1insecure. Other
contexts in which a value outside a permitted range
can arise are: assignments to subrange variables,
case selection, set membership creation and testing,
and overflow in integer and real arithmetic.
Although, all such violations cannot be dealt with
by the language designer, the attempt must be made
to reduce the cost of run-time detection. Pascal
has taken steps towards this goal, but a lot is left

to be desired.

30




It is obvious tha; although Pascal has many good
features, it also has several shortcomings. It does
not quite support the design, reliability and
maintainability of a large software system. In the
next chapter we will discuss Ada and see how it can

prove to be a good tool for accomplishing our goals.
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CHAPTER 6

ADA AS A SOFTWARE DEVELOPMENT TOOL

Ada seems to be a language which has incorporated all
desirable features of modern programming languages. It
is built upon Pascal's data and control structures.
However, many of the shortcomings of Pascal discussed in
the previous chapter have been eliminated. It also
contains many desirable features not available in the
existing modern languages. Until recently such concepts
(e.g. EXIT, loops, concurrent processes) have only been
used by researchers as desired features. Our purpose here
is not to provide details of the Ada language. We plan to
pick those features which satisfy the objective criteria
of a language choice for 1large software production. At
this point, we would like to point out that Ada seems to
have all required features with a possible exception of
simplicity. However, it should be made clear that Ada may
violate simplicity only in one sense that it is difficult
for a beginner to master.

1. Ada's Type Structures Are Secure:

The following discussion of the type structures of Ada
is not intended to be detailed and comprehensive. It is
intended to show how Ada's structures overcome the

problems and insecurities of Pascal's structures.




(a) We first note that Ada distinguishes between the

static and dynamic properties of types. The static
properties concern the applicable operations, whereas
the dynamic properties are range constraints on
integers or index constraints on arrays. To make the
distinction clear, the ©programmer is allowed to

specify a dynamic property of a type by defining its

~ subtype. For example, INTEGER is a system-provided

type whose subtype can be defined as:
Subtype NATURAL is INTEGER range 1..INTEGER'LAST;

A variable of subtype NATURAL inherits all the
properties from the type INTEGER except that it
satisfies certain constraint: it belongs to the subset
{1,2,3,....} of integers. The constraint may involve
expressions that cannot be evaluated at compile-time
(statically). This is done when subtype declaration
is elaborated at the entry of the scope where
declaration appears. However, the programmer is aware
of it and has full information about the degree of
validation. This 1is crucial for reliability as seen
earlier.

(b) Ada distinguishes between static and dynamic
arrays. We first note that Pascal does not have
dynamic arrays at all so that changing the bounds of

arrays implies recompilation of the program. In Ada's
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dynamic array, the type is characterized by the type
of components, the number of indices, and the type of
each index. The bounds are not considered as a part
of the array type. For example, <consider the
following.
type VECTOR is array (INTEGER <> ) of FLOAT;
where, <> stands for unspecified range and FLOAT
is system-provided type. The objects of type
VECTOR have components of type FLOAT indexed by
values in unspecified range of integers. But for
any object of an array type, the bounds of each
index must be specified:
subtype VECTOR_6 is VECTOR (1l..6);
subtype VECTOR_5 is VECTOR (l..5);
Then the variables can be declared as
A, B: VECTOR_6; C, D: VECTOR_5
(c) Ada also provides another mechanism
(initialization) for installing bounds. Suppose B=(1l,
2, 1.5, 0, 1) 1is of type VECTOR_). Then we can
declare C:constant VECTOR:=B. However, it should be
noted that C denotes read-only data because of
constant specification.
(d) Ada also provides the bounds instantiation via
parameter passing. To illustrate the point, consider

the following example.
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Suppose we intend to add two same-size vectors.

This can be accomplished by writing the following Ada
function.
function ADD_VECTOR (A, B: in VECTOR) return VECTOR is
W:VECTOR (l..A'LENGTH);
begin
for I in A'range loop W(I):=A(I)+B(I);

end loop return W;
end ADD_VECTOR;

We note that W is local to the function. The
loop variable I does not need explicit declaration.
The formal parameters A, B automatically have the same
bounds as the actual parameters. Such bounds are
automatically accessible via A'range. This renders
the function completely general which can be called
with arrays of different sizes as parameters.

() In the following we show how Ada's variant
records are secure as opposed to the Pascal's. Let us
consider the variant record described in the previous

chapter to demonstrate its security in Ada.

type DEPARTMENT is (HOUSEWARE, SPORTS,DRUGS,FOOD, BEVERAGE);

subtype MONTH is INTEGER range 1..12;

type ITEM (AVAILABLE: BOOLEAN:=TRUE) is

record PRICE: REAL;
case AVAILABLE of
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when TRUE => AMOUNT: INTEGER,
WHERE : DEPARTMENT ;
when FALSE => MONTH_EXPECTED: MONTH;
end case;
end record;
It is possible to define subtype NOT__AVAILABLE is ITEM
(FALSE) where variant is frozen. Ada record has tag field
AVAILABLE defining the possible variant of ITEM. The tag
is mandatory and cannot be assigned directly. 1In case the
tag AVAILABLE 1is not initialized (as above) the tag
constraint must be provided for any object declaration
such as A : ITEM (FALSE). The tag value can be changed
only for objects not explicitly constrained, and by
assignment to the record as a whole. Consider the
following example to illustrate the point. Suppose I
ITEM; where ITEM has initial value TRUE. Then it is legal
to write I:=A. Here the variant is set to FALSE because A
is of type ITEM(FALSE). The example of the whole record
assignment is:
I1:=(PRICE=> 2.50,AVAILABLE=> TRUE, AMOUNT=>1000,
WHERE=>BEVERAGE) ;
If an access in attempted to a component (say) I-WHERE
then the compiler automatially converts it into the
run-time test preceding the access:

if not I-AVAILABLE then raise CONSTRAINT ERROR end if;

36




2. Ada Has Secure Pointers:

The example of an Ada pointer is as follows.
type BUFFER is
record
MESSAGE:STRING(1..8); -~ STRING System defined
PRIORITY: INTEGER range 1..100;

end record,

type POINTER is access BUFFER;

P1, Py, P3: POINTER;

We can create new objects:
P1:= new BUFFER; -- create a BUFFER-type record
P2:= new BUFFER'(MESSAGE => "DELETE",PRIORITY => 10);
P3:= new BUFFER'(MESSAGE => "READY",PRIORITY => 1);
Two pointers can rtefer to the same object if their types
are compatible under name-equivalence (see later). This
was seen to be ambiguous in case of Pascal. Two pointers
of noncompatible types are guaranteed not to point to the
same object.

3. Ada's Control Structures:

Ada incorporates all desirable control structures with
pleasant syntactic conventions directly supporting
readability, expressiveness and reliability.

(a) . Selection:

(i) if Cy then Sy end if;

(ii) if Cy then Sj;else if Cy then S7 end if;end if;
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(iii) 1if Cy then Sj;elsif C92 then S2 end if;

(iv) Case x is
when aj,...ap => S5i;
when b = S9;
when others = S53; -- out of bound

-- cannot happen here

end case;

(b). Counter-Driven Iterations:

(i) for i in 1..50 loop S end loop;

(ii) for i in A'range loop S end loop;
(¢) Condition-Driven lterations:

(i) while C loop S end loop;

(ii) loop Sq exit---S9 end loop; -- infinite loop

(d) Jump:
Labels <KL>>; goto L
"Goto" are probably not essential in Ada and we could
use other structured constructs to implement algorithms.
If we must use "goto'", we limit its scope. Ada restricts
the scope of '"goto" in the following manner. Execution of
a '""goto" may not transfer control
(i) into a compound statement namely if, loop,

accept, case, block or exception handler.

(ii) from parts of 9one if, case, select, oT

exception handler to another.
(iii) back into a block, subprogram, task or package

body.




In general it may transfer control only within the same
lexical level.

We see that Ada supports highly structured
programming, and hence, expressiveness. The selection and
iteration constructs contain delimeters so that the Ada
programs are highly readable.

4. Ada's Subprograms:

(a) Functions: The example has been given in 1(d)
above
(b) Procedures:
procedure INNER_PRODUCT(A,B:in VECTOR,IP:out FLOAT)is
SUM:FLOAT:=0.0;
begin -- type VECTOR defined earlier
for i in A'range loop SUM:=SUM+A(i)*B(I)

end loop;
IP:=SUM;

end INNER_PRODUCT;
We note that Ada procedures are very general. The above
procedure can take any dimension vectors A, B and find
their inner product. Such generality is not possible in
languages like Pascal. The local variables and parameter
can be initialized at declaration. This completely
removes the insecurity of —referencing  uninitialized
variables. The parameters can be overloaded, providing
orthogonality and generality. Ada procedures have many

more modern features.
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For the details Ada report may be consulted. We conclude
by remarking that a procedure can be passed as a parameter
only when 1its parameters have been declared. This
provides for static checking of correct use and eliminates
insecurity seen in Pascal.

5. Ada's Package Facilities:

(a) Packages can be used for declaration of a set of
common entities such as variables, constants, and
types. For example, <consider the following
package declaration.

package COMPLEX_NUMBER is
type COMPLEX is
record RE:INTEGER; IM: INTEGER;

end record;

LIST:array (1..1000) of COMPLEX;
end COMPLEX_ NUMBER;
The processing of the package is such that it acts as a
declaration of the described variables and types. The
variables and types can be used in two ways.
(i) with COMPLEX_NUMBER
Type A:LIST;
(ii) Type A:COMPLEX_NUMBER.LIST;
The general structure of a package consists of the package
specification and package body. The specification part

contains all 'exportable'" information. The package body
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contains hidden details of implementation and

‘ initialization, and 1is executed upon activation of the
unit wusing the package declaration. The details are
provided in (b) below
} (b) Packages can be used for grouping related
} subprograms. For example, consider the set of
vector operations.
package VECTOR_OP is
subtype INDEX is INTEGER range 0..INTEGER'LAST;
type VECTOR is private;
function"+"(u,v:in VECTOR)return VECTOR;
function"*"(x:in FLOAT,u:in VECTOR)return VECTOR;
private
type VECTOR is array(INDEX range <>) of FLOAT;
end VECTOR_OP;

package body VECT_OP is

function"+"(u,v:in VECTOR)return VECTOR is
W:VECTOR (1. .u'LENGTH);
begin

for i in u'range loop W(i):=U(i)+V(i);

end loop; return W;

end "+";
function"*"(x:in FLOAT,u:in VECTOR)
return VECTOR is
W:VECTOR (1. .u'LENGTH);
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begin

for i in u'range loop w(i):=x*u(i);

end loop;return W;

end VECT_OP;
The type VECTOR and operations + and * are exportable.
The package body is hidden from outside. Use of the +, *
for vectors is called overloading these arithmetic
operations. This provides mathematical appearance to
these vector operations. It should be noted that type
VECTOR exported by the module is private. This means that

the details of type representation enclosed between

private -- end VECTOR_OP in the specification part is not

visible outside the package. The effect of this
restriction 1is that variables of type VECTOR can be
manipulated only by operations + and * provided by the
package. The assignment and equality/inequality test,
which are predefined are also permitted. These latter

operations can be curbed using limited private type. One

good point about Ada packages is that they are
automatically created when units declaring the variables
of type VECTOR are activated. This 1is a definite
advantage over CLU'S clusters where the explicit create
operation 1is required. The private type definition is

included in the specification part because the
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specification and body are separately compiled and
compilation of using unit depends on specification and not
body.
(c) Packages can be used for creating new abstract
data structures. The example, 5(b) provides a new
data structure namely VECTOR. Package facilities can
be used to create higher level structures such as
stacks, queues, etc.

6. Generic Facilities: Consider the following example.

generic
Lype ELEMENT is private;
package SET_OP is
type SET is private;
procedure INSERT(x:in out SET;y:in ELEMENT);
procedure DELETE(x:in out SET,y:in ELEMENT);
function MEMBER(x:in SET;y:in ELEMENT)
return BOOLEAN;
private
type SET is array(l..50) of ELEMENT;
end SET_OP;
The details of the package body 1is left out. Since
ELEMENT is of private type, only operations (by default)
permitted on ELEMENT-type variables are: assignment and
testing equality/inequality. Before using the generic

package, it must be instantiated:
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package INTEGER_SET _OP is new SET_OP (INTEGER);
We  observe that  this facility directly supports,
factorization and generality.

7. Ada's Exception Handling:

Ada supports reliability of the software via exception
handling. Ada's exception handling can be demonstrated by
the following example:
package DEMONSTRATE is

ERROR: exception;

procedure Q (x, y: in INTEGER, z: out FLOAT);
end DEMONSTRATE;
package body DEMONSTRATE is

procedure Q (%, y: in INTEGER; z:out FLOAT) is
begin |

if y=0 then raise ERROR; -- procedure Q is the

-- raising unit

else z:=x/y;

endif;
end DEMONSTRATE;
Now user writes the following block.
BLOCK -- BLOCK is block name.
-- Block body is enclosed between

declare -~ declare and end BLOCK. Details later
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begin
use DEMONSTRATE;

Q (a,b,z);
exception -- exception handler
-- resides here in the BLOCK
when ERROR => -- do something
when Others => -- do something
end;
end BLOCK;

Any program unit such as a procedure, block or package can
raise exception (say) ERROR by instruction raise: ERROR.
Handler can reside within the raising or eﬁclosing blocks
or outside. If it resides within the same block, then it
skips wuntil the handler body executes it, and then the
raising unit is terminated. If it is outside the raising
block, then the raising unit is terminated and raising is
propagated to the enclosing block. We note that there are
no parameters. So the raising wunit can contain the
handler where user specified clean-up can be performed
before returning to the caller.

8. Ada's Communicating Processes:

Such processes in Ada terminology are called tasks.
This is an effective mechanism to implement concurrent
routines. The necessity of such facilities has been

explained earlier. We begin with an example.
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task A ii

entry P(x: in FLOAT);
end A;
task body A is -- a does not know the name (B) of caller
begin -- y below is a global var
accept P(x:in FLOAT) do y:=x*x end;
-- this accept point must rendezvous with

-- entry call in task B for communication

entry Q (x:in FLOAT);

end B;
task body B is -- task B owns task A

-- s0 it knows the same of the called
v: FLOAT;
begin
v:=A.P (12.0); -- entry call for A made here and

-- must rendezvous with accept in A
accept Q(X:in FLOAT)do z:=x+4.0 end; -- z is a global var
end B;

The entry call differs from a procedure call in that the
entry is executed by the owning task only. ©Note that
entry call is made in task B by v:=A.P(12.0). Upon this
call, in task A the statement 'accept P (x:in FLOAT) do

y:=x*x" is executed. In other words, entry call in B (for
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A) and accept in A's body are synchronized (rendezvous).
Thus if entry call in B is reached before accept in A's
body then B waits for A to reach accept point for
rendezvous. If A reaches accept and no entry call yet has
been made, then A waits until B's entry-call point is
reached. After rendezvous the exchange of messages takes
place (i.e., accept of A is executed) and then A and B
both proceed in parallel. It should be noted that calling
task (B) knows the name of called (A), but A does not know
the name of B. This differs from CSP, where both know the
name of each other. Other details of tasks are omitted
because of the limited scope of the paper.

9. Ada's Separate Compilation Facilities:

Ada recognizes the need to be able to compile a
program in distinct pieces, although we may do otherwise
if so desired. The text of the program may be presented
in one or more compilation units. The compilation units
are:

(a) subprogram declaration

(b) subprogram body

(c) package declaration

(d) package body

(e) generic declaration

(f) generic body

(g) subunits (see topdown approach below)
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Tasks are not treated as a separate compilation

units. Instead, tasks occur inside packages. For using a
task from the library the corresponding package must be in
the library. All units mentioned above have Dbeen
explained earlier. Subunit mentioned in (g) 1is explained
below in topdown approach.

The compilation units of a program are said to belong

to a program library in as much as they can be compiled

and stored in the library. Any program submitted for
compilation 1is treated in context of package STANDARD
which is predefined, precompiled and stored in the
library. Consequently, all names of STANDARD are visible
automatically. All other precompiled wunits in library
have to be explicitly made visible. Direct visibility may
be achieved as follows:
Use clause: Use may be used to gain direct visibility
of selected compotents of a package. Suppose a package P
has been defined which has procedures Q1 and Qp, and a
unit wishes to use Qj. This may be achieved in two ways:
(a) Use P: All names in P are now visible from this
point on in the wusing unit, and hence Q1 is
visible in particular.
(b) P. Q1 : Only Q1 is visible.
The advantage of use facilities is that only needed

units can be selectively made visible. In general, there
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are two  approaches provided by Ada for separate

compilation.

(a) Bottom-up Approach:

A unit being compiled may refer to a unit in the
library. We may use a with clause for all library
units including generic. The order of compilation and
recompilation among the program units is determined by
references to library units in context specification.
Suppose a package COMPLEX__NUM 1is a library unit
(already compiled and stored). Then the procedure to
solve a quadratic equation using this package may be
as follows:

with COMPLEX_NUM;use COMPLEX_NUM;
procedure QUADRATIC_ROOT(a,b,c,:in REAL;
ry,rp:out COMPLEX)is

"with COMPLEX_NUM" in the above example dictates that
COMPLEX_NUM be compiled first. Thus QUADRATIC_ROOT is
dependent on COMPLEX__NUM. Recompilation of a unit
forces recompilation of all dependent units. Although
the specification and body units of a package are
compilable separately, the latter is dependent on the
former  implicitly (without using with). Any unit
using a package depends on its specification unit only

and recompilation of the body does not require the
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recompilation of the unit. Because of this

independence, the private type definition mentioned

earlier is in the package specification and not in the

body.
(b) Topdown Approach (Subunits):

As an example consider the package body for stack

operations.

package body STACK is

S:array(l..100)of REAL;
Top: INTEGER range 0..100;
procedure PUSH(x:in REAL) is separate;
procedure POP(x:out REAL) is separate;
begin TOP:=0; end STACK;
Two subunits PUSH and POP can then be separately
compiled and take the form:
separate (STACK)
procedure PUSH(x:in REAL)is
begin TOP:=TOP+1;S(TOP):=x;
end PUSH;
separate (STACK)
procedure POP(x:out REAL)is
begin x:=S(TOP); TOP:=TOP-1;
end POP;
Note that STACK is dependent on PUSH and POP so that these

units must be in library before STACK can be compiled.
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10. Ada's Blocks:

A block statement permits textual encapsulation of a
sequence of statements, along with local declarations and
possibily exception handler. Data resources are allocated
only when the block is entered. Ada's data local to the
block is not visible outside. Block is limited in scope
to its immediate lexical level and cannot be called. This
is unlike a procedure which is callable by any other
unit. The scope of an object declared in a block extends
from the point of its first occurrence to the end of the
block. Blocks may be used for encapsulating a section of
code for a local exception handler. They can also be used
to declare local objects or types that are not to be used
by other program units. The Ada's block forms can be
illustrated by the following block (SWAP).

SWAP

declare
T:REAL;
T:=A;
A:=B;
B:=T

end SWAP;

For further details the Ada report may be consulted.
We remark that Ada blocks have general visibility and
scope rules as discussed earlier.
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11. Ada's Strong Typing:

Ada is a strongly typed Llanguage. It enforce
name-equivalence for the type compatibility, supporting
security to the fullest level.

(i) Two subtypes of the same base type are compatible
provided they have same constraints.

(ii) Pointers are managable and secure as seen before.

(iii) Variant records are secure because of tag field

constraints,

(iv) Procedure parameters must have their parameter

declared.

12. Declaration Initialized:

We can declare objects with default initial values,

such as:
EXTENT : DISTANCE := 0.0;

We must initialize objects before they are used because
Ada does not define initial values for objects. The
result of attempting to use an object before it is given a
value will lead to program error. Other initializations
instances have been described in foregoing examples. This
facility provides for security against accessing
uninitialized variables by permitting defaults through
initialization.

13. Exponentiation Operators:

Ada is designed to omit the exponential to a real
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power. We must write an appropriate overloaded function

if real power 1is desired. It is predefined only for
integer powers. But we may not raise an integer to a
negative power, since the result would not be of an

integer type. Such an attempt will cause a program error.
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CHAPTER 7

CONCLUSION

Although Pascal has many nice features, it falls short
of being an efffective tool for a large software
development. On the other hand, Ada via its features
supports the software production goals of design,
efficiency, reliability and maintainability. Ada supports
readability because of its comment conventions, delimiters
in its control statements, good lexical conventions and
various type of abstractions. It supports expressivenees
through its rich data, control and unit structures. Ada
supports orthogonality/generality by permitting
overloading of arithmetic operations and parameters,
creation of new types and generic facilities for
procedures and packages. Ada supports modularity through
its package facilities, separate compilation facilities of

various units and harmonious interfaces via, separate, use

and with. Ada supports reliability by permitting
writability and exception handling. It supports

efficiency of software by enforcing type security. Ada's
softwares are maintainable as it supports factorization,
modifiability and modularity. Ada's facilities of tasks

help in producing software where concurrent routines are
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needed. So we conclude that Ada meets the
objective criteria of a language for a large software

production where Pascal does not.
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